TopBP1 assembles nuclear condensates to switch on ATR signaling

نویسندگان

چکیده

•TopBP1 assembles biomolecular condensates•Composition of TopBP1 condensates revealed by proximity proteomics•Phosphorylation induces condensation•TopBP1 condensation switches on ATR/Chk1 signaling and causes fork slowing ATR checkpoint is crucial for cellular responses to DNA replication impediments. Using an optogenetic platform, we show that TopBP1, the main activator ATR, self-assembles extensively yield micrometer-sized condensates. These opto-TopBP1 are functional entities organized in tightly packed clusters spherical nano-particles. reversible, occasionally fuse, co-localize with partner proteins. We provide evidence a molecular switch amplifies activity phosphorylate kinase 1 (Chk1) slow down forks. Single amino acid substitutions key residues intrinsically disordered activation domain disrupt consequently signaling. In physiologic salt concentration pH, purified undergoes liquid-liquid phase separation vitro. propose actuation mechanism assembly driven highly regulated multivalent cooperative interactions. The primary structure subjected constant chemical alterations caused spontaneous decay, endogenous metabolites, environmental genotoxic agents (Friedberg et al., 2006Friedberg E.C. Walker G.C. Siede W. Wood R.D. Schultz R.A. Elenberger T. Repair Mutagenesis.2nd. ASM Press, Washington, DC2006Google Scholar; Lindahl, 1993Lindahl Instability decay DNA.Nature. 1993; 362: 709-715Crossref PubMed Scopus (4155) Google Scholar), hence organisms have evolved multiple repair mechanisms ensure genome integrity survival (Ciccia Elledge, 2010Ciccia A. Elledge S.J. damage response: making it safe play knives.Mol. Cell. 2010; 40: 179-204Abstract Full Text PDF (2732) Jackson Bartek, 2009Jackson S.P. Bartek J. DNA-damage response human biology disease.Nature. 2009; 461: 1071-1078Crossref (3455) Tubbs Nussenzweig, 2017Tubbs Nussenzweig Endogenous as source genomic instability cancer.Cell. 2017; 168: 644-656Abstract (570) Scholar). sensors, protein scaffolds, processing activities accumulate at sites form spatially defined reversible structures commonly referred nuclear foci (Garcia-Higuera 2001Garcia-Higuera I. Taniguchi Ganesan S. Meyn M.S. Timmers C. Hejna Grompe M. D’Andrea A.D. Interaction Fanconi anemia proteins BRCA1 common pathway.Mol. 2001; 7: 249-262Abstract (1004) Lisby 2001Lisby Rothstein R. Mortensen U.H. Rad52 forms recombination centers during S phase.Proc. Natl. Acad. Sci. U 98: 8276-8282Crossref (336) Maser 1997Maser R.S. Monsen K.J. Nelms B.E. Petrini J.H. hMre11 hRad50 induced normal double-strand breaks.Mol. Biol. 1997; 17: 6087-6096Crossref (419) Park 1996Park Knauf J.A. Pendergrass S.H. Coulon C.H. Strniste G.F. Marrone B.L. MacInnes M.A. Ultraviolet-induced movement protein, Xeroderma pigmentosum type G, nucleus.Proc. 1996; 93: 8368-8373Crossref (48) Much still remains be understood about forces drive formation their consequences (DDR). recent years, application principles polymer chemistry biological molecules has accelerated spectacularly our understanding functions membraneless compartments (Banani 2017Banani S.F. Lee H.O. Hyman A.A. Rosen M.K. Biomolecular condensates: organizers biochemistry.Nat. Rev. Mol. Cell 18: 285-298Crossref (1685) Bracha 2019Bracha D. Walls M.T. Brangwynne C.P. Probing engineering liquid-phase organelles.Nat. Biotechnol. 2019; 37: 1435-1445Crossref (72) Simons, 2012Hyman Simons K. biology. Beyond oil water—phase transitions cells.Science. 2012; 337: 1047-1049Crossref (164) Shin Brangwynne, 2017Shin Y. Liquid cell physiology disease.Science. 357: eaaf4382Crossref (1162) Söding 2020Söding Zwicker Sohrabi-Jahromi Boehning Kirschbaum Mechanisms active regulation condensates.Trends 2020; 30: 4-14Abstract (49) self-organized micrometer-scale structures, called condensates, assemble via weak, cooperative, dynamic interactions rich repertoire higher order diverse physical properties, variable size, no stoichiometry constituent Whereas nucleic acids can serve seeding platform self-organization soluble (Mao 2011Mao Y.S. Sunwoo H. Zhang B. Spector D.L. Direct visualization co-transcriptional body noncoding RNAs.Nat. 2011; 13: 95-101Crossref (334) McSwiggen 2019McSwiggen D.T. Hansen A.S. Teves S.S. Marie-Nelly Hao Heckert A.B. Umemoto K.K. Dugast-Darzacq Tjian Darzacq X. Evidence DNA-mediated compartmentalization distinct from separation.eLife. 8: e47098Crossref (99) bridging factors cross-link chromatin segments compartmentalize process polymer-polymer (Erdel 2020Erdel F. Rademacher Vlijm Tünnermann Frank L. Weinmann Schweigert E. Yserentant Hummert Bauer al.Mouse heterochromatin adopts digital compaction states without showing hallmarks HP1-driven separation.Mol. 78: 236-249.e7Abstract (90) Increasing indicates scaffolds self-organize separation, de-mixing yields condensed enriched dilute hubs implicated processes, including innate immune (Du Chen, 2018Du Chen Z.J. DNA-induced liquid cGAS activates signaling.Science. 2018; 361: 704-709Crossref (255) microtubule nucleation (Woodruff 2017Woodruff J.B. Ferreira Gomes Widlund P.O. Mahamid Honigmann centrosome selective condensate nucleates microtubules concentrating tubulin.Cell. 169: 1066-1077.e10Abstract (284) transcription (Boija 2018Boija Klein I.A. Sabari B.R. Dall’Agnese Coffey E.L. Zamudio A.V. Li Shrinivas Manteiga J.C. Hannett N.M. al.Transcription activate genes through phase-separation capacity domains.Cell. 175: 1842-1855.e16Abstract (523) Kwon 2013Kwon Kato Xiang Wu Theodoropoulos P. Mirzaei Han Xie Corden J.L. McKnight S.L. Phosphorylation-regulated binding RNA polymerase II fibrous polymers low-complexity 2013; 155: 1049-1060Abstract (319) Lu 2018Lu Yu Ganguly Liu Zhou Q. Phase-separation C-terminal hyperphosphorylation II.Nature. 558: 318-323Crossref (239) 2018Sabari Boija Abraham B.J. al.Coactivator super-enhancers links gene control.Science. eaar3958Crossref adaptative stress (Franzmann Alberti, 2019Franzmann T.M. Alberti Protein strategy.Cold Spring Harb. Perspect. 11: a034058Crossref (46) Franzmann 2018Franzmann Jahnel Pozniakovsky Holehouse Nüske Richter Baumeister Grill S.W. Pappu R.V. al.Phase yeast prion promotes fitness.Science. 359: eaao5654Crossref (289) Riback 2017Riback Katanski C.D. Kear-Scott Pilipenko E.V. Rojek A.E. Sosnick T.R. Drummond D.A. Stress-triggered adaptive, evolutionarily tuned response.Cell. 1028-1040.e19Abstract (348) occur sites. Upon laser micro-irradiation, poly(ADP-ribose) seeds prototypical FUS damaged (Altmeyer 2015Altmeyer Neelsen Teloni Pozdnyakova Pellegrino Grøfte Rask M.D. Streicher Jungmichel Nielsen M.L. Lukas demixing seeded poly(ADP-ribose).Nat. Commun. 2015; 6: 8088Crossref (293) Patel 2015Patel Jawerth Maharana Hein M.Y. Stoynov Saha al.A liquid-to-solid transition ALS disease mutation.Cell. 162: 1066-1077Abstract (1173) 53BP1 separates breaks (Kilic 2019Kilic Lezaja Gatti Bianco Michelena Imhof Altmeyer Phase determines liquid-like behavior compartments.EMBO 38: e101379Crossref (128) Pessina 2019Pessina Giavazzi Yin Gioia U. Vitelli V. Galbiati Barozzi Garre Oldani Flaus al.Functional promoters mediate RNA-driven damage-response factors.Nat. 21: 1286-1299Crossref (107) induction p53 p21 To explore DDR, studied Topoisomerase IIβ-binding (TopBP1), essential factor DDR pathway prototype composed modular interaction domains. features nine repetitions well-folded protein-protein motif, (BRCT), (AAD), located between BRCT6 BRCT7, which disordered. brings together different sets complexes involved initiation (Hashimoto Takisawa, 2003Hashimoto Takisawa Xenopus Cut5 CDK-dependent replication.EMBO 2003; 22: 2526-2535Crossref (105) Mäkiniemi 2001Mäkiniemi Hillukkala Tuusa Reini Vaara Huang Pospiech Majuri Westerling Mäkelä T.P. Syväoja J.E. BRCT domain-containing response.J. Chem. 276: 30399-30406Abstract (178) (Kumagai 2006Kumagai Yoo H.Y. Dunphy W.G. ATR-ATRIP complex.Cell. 2006; 124: 943-955Abstract (539) Mordes 2008Mordes Glick G.G. Zhao Cortez ATRIP PIKK regulatory domain.Genes Dev. 2008; 1478-1489Crossref (248) (Broderick 2015Broderick Nieminuszczy Blackford A.N. Winczura Niedzwiedz TOPBP1 recruits TOP2A ultra-fine anaphase bridges aid resolution.Nat. 6572Crossref (45) Leimbacher 2019Leimbacher P.A. Jones S.E. Shorrocks A.K. de Marco Zompit Day Blaauwendraad Bundschuh Bonham Fischer Fink al.MDC1 interacts maintain chromosomal stability mitosis.Mol. 74: 571-583.e8Abstract (36) 2017Liu Cussiol J.R. Dibitetto Sims Twayana Weiss Freire Marini Pellicioli Smolka M.B. TOPBP1Dpb11 plays conserved role homologous coordinated recruitment 53BP1Rad9.J. 216: 623-639Crossref (28) Moudry 2016Moudry Watanabe Wolanin K.M. Bartkova Wassing I.E. Strauss Troelsgaard Pedersen Oestergaard V.H. al.TOPBP1 regulates RAD51 phosphorylation loading PARP inhibitor sensitivity.J. 2016; 212: 281-288Crossref (47) (Liu 2009Liu Bellam N. Lin Wang Stockard C.R. Grizzle W.E. W.C. Regulation TopBP1: potential inactivation cancer.Mol. 29: 2673-2693Crossref (52) Wright 2006Wright R.H. Dornan E.S. Donaldson M.M. Morgan I.M. contains transcriptional suppressed two adjacent domains.Biochem. 400: 573-582Crossref (14) master its effector Chk1 impediments Maréchal Zou, 2013Maréchal Zou sensing ATM kinases.Cold 5: a012716Crossref (696) Saldivar 2017Saldivar Cimprich K.A. ATR: ensuring faithful duplication challenging genome.Nat. 622-636Crossref (320) ensures organismal coordination physiological processes (Saldivar Studies using egg extracts largely contributed defining orchestrated set events leading (Acevedo 2016Acevedo Yan Michael W.M. A (RPA)-coated single-stranded allows damage.J. 291: 13124-13131Abstract (23) Byun 2005Byun T.S. Pacek Yee M.C. Walter Functional uncoupling MCM helicase ATR-dependent checkpoint.Genes 2005; 19: 1040-1052Crossref (555) Duursma 2013Duursma A.M. Driscoll Elias MRN complex recruitment.Mol. 50: 116-122Abstract (101) Kumagai Van 2010Van Waga Continued primer synthesis stalled forks contributes activation.J. 189: 233-246Crossref (67) recruited lesions intermediates interacting ATRIP, binds RPA-covered (Zou 2003Zou Sensing recognition RPA-ssDNA complexes.Science. 300: 1542-1548Crossref (1957) RAD9-RAD1-HUS1 (9-1-1) clamp (Delacroix 2007Delacroix Wagner J.M. Kobayashi Yamamoto Karnitz L.M. Rad9-Hus1-Rad1 TopBP1.Genes 2007; 1472-1477Crossref (341) Michael, 2009Yan alpha-mediated 9-1-1 forks: implications restart-based activation.Cell Cycle. 2877-2884Crossref (44) Here, used conceptual framework born studies gain fresh insights into combination biochemical approaches, intrinsic undergo separation. living cells slows progression Our data indicate emerge TopBP1-driven upon entry mitosis (Leimbacher 2015Pedersen R.T. Kruse Nilsson required reduce transmission G1 daughter cells.J. 210: 565-582Crossref (53) Scholar) exposed hydroxyurea, ultraviolet light, or ionizing radiations (Cescutti 2010Cescutti Negrini Kohzaki Halazonetis T.D. checkpoint.EMBO 3723-3732Crossref (63) Greer 2003Greer Besley B.D. Kennedy K.B. Davey hRad9 rapidly containing damage-dependent topoisomerase beta focus formation.Cancer Res. 63: 4829-4835PubMed probe fused cryptochrome 2 (Cry2) Arabidopsis thaliana, oligomerizes exposure 488 nm light (Bugaj 2013Bugaj L.J. Choksi A.T. Mesuda C.K. Kane Schaffer D.V. Optogenetic clustering mammalian cells.Nat. Methods. 10: 249-252Crossref (269) Kilic Berry Pannucci Haataja M.P. Toettcher Spatiotemporal control intracellular light-activated optodroplets.Cell. 159-171.e14Abstract 2019Zhang Fan Yang Temirov Messing Kim H.J. Taylor J.P. Chronic granules cytotoxic reveals evolution ALS-FTD pathology.eLife. e39578Crossref (88) (Figure 1A). This system makes possible space time (Bracha 2018Bracha Wei Zhu Kurian Avalos Mapping local global photo-oligomerizable seeds.Cell. 1467-1480.e13Abstract (152) Scholar, 2018Shin Chang Y.C. D.S.W. Sanders D.W. Ronceray Wingreen N.S. mechanically sense restructure genome.Cell. 1481-1491.e13Abstract (245) evaluate expression mCherry Cry2 (named opto-TopBP1) doxycycline Flp-In HEK293 cells. Overall, level recombinant was similar S1A). At this expression, remained diffuse state not directly detectable fluorescence microscopy 1B, OFF panel). these array blue light-emitting diodes (LEDs) 3 min light-dark cycles (4 s followed 10 dark), observed nuclei, specifically ON contrast, did detect any light-exposed expressing opto-module (mCherry-Cry2) alone subunit opto-RAD9 (RAD9-mCherry-Cry2) S1B). tryptophane AAD position 1138 laevis, 1147 mice, 1145 humans 2013Zhou Z.W. T.L. Bruhn Krueger Min Z.Q. Carr An function ATR-activation-domain (AAD) mouse development senescence.PLoS Genet. 9: e1003702Crossref (41) substitution W1147 arginine residue embryonically lethal, indicating ATR-activating (Zhou W1148R does association xTopBP1 xATR analyzed impact W1145R structures. TopBP1-expressing exhibited markedly reduced number comparison wild-type (WT) 1B), suggesting aromatic important growth Ewing’s tumor associated antigen (ETAA1) basal (Michelena 2019Michelena Basal CHK1 safeguards S-phase functions.J. 218: 2865-2875Crossref (4) mitotic (Bass Cortez, 2019Bass T.E. Quantitative phosphoproteomics ETAA1.J. 1235-1249Crossref (24) Like ETAA1 endowed Bass 2016Bass Luzwick J.W. Kavanaugh G. Carroll Dungrawala Feldkamp Putney Chazin W.J. acts integrity.Nat. 1185-1195Crossref (123) Haahr 2016Haahr Hoffmann Tollenaere Ho Toledo L.I. Mann Bekker-Jensen Räschle Mailand Activation RPA-binding ETAA1.Nat. 1196-1207Crossref (124) 2016Lee Yuan response.Curr. 26: 3257-3268Abstract (70) Considering AADs, replaced then tested chimeric opto-TopBP1ETAA1-AAD TopBP1ETAA1-AAD 1C). Consistent this, activ

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TopBP1 Activates the ATR-ATRIP Complex

ATR is a key regulator of checkpoint responses to incompletely replicated and damaged DNA, but the mechanisms underlying control of its kinase activity are unknown. TopBP1, the vertebrate homolog of yeast Cut5/Dbp11, has dual roles in initiation of DNA replication and regulation of checkpoint responses. We show that recombinant TopBP1 induces a large increase in the kinase activity of both Xeno...

متن کامل

TopBP1 and ATR colocalization at meiotic chromosomes: role of TopBP1/Cut5 in the meiotic recombination checkpoint.

Mammalian TopBP1 is a BRCT domain-containing protein whose function in mitotic cells is linked to replication and DNA damage checkpoint. Here, we study its possible role during meiosis in mice. TopBP1 foci are abundant during early prophase I and localize mainly to histone gamma-H2AX-positive domains, where DNA double-strand breaks (required to initiate recombination) occur. Strikingly, TopBP1 ...

متن کامل

Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation.

Activation of the cellular DNA damage response is detrimental to adenovirus (Ad) infection. Ad has therefore evolved a number of strategies to inhibit ATM- and ATR-dependent signaling pathways during infection. Recent work suggests that the Ad5 E4orf3 protein prevents ATR activation through its ability to mislocalize the MRN complex. Here we provide evidence to indicate that Ad12 has evolved a ...

متن کامل

TopBP1 activates ATR through ATRIP and a PIKK regulatory domain.

The ATR (ATM and Rad3-related) kinase and its regulatory partner ATRIP (ATR-interacting protein) coordinate checkpoint responses to DNA damage and replication stress. TopBP1 functions as a general activator of ATR. However, the mechanism by which TopBP1 activates ATR is unknown. Here, we show that ATRIP contains a TopBP1-interacting region that is necessary for the association of TopBP1 and ATR...

متن کامل

Nuclear Transport: A Switch for the Oxidative Stress—Signaling Circuit?

Imbalances in the formation and clearance of reactive oxygen species (ROS) can lead to oxidative stress and subsequent changes that affect all aspects of physiology. To limit and repair the damage generated by ROS, cells have developed a multitude of responses. A hallmark of these responses is the activation of signaling pathways that modulate the function of downstream targets in different cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Molecular Cell

سال: 2021

ISSN: ['1097-4164', '1097-2765']

DOI: https://doi.org/10.1016/j.molcel.2020.12.049